
SPRING 2025: MATH 540 EXAM 2

You must provide all details to receive full credit. You may use calculators on this exam. Please put your
name on all pages that you turn in.

Name:

Statements. Define any terms you use in the statements below. (3 points each)

1. State the Chinese Remainder Theorem.

Solution. Suppose n1, . . . , nr ∈ Z are positive integers such that for all i ̸= j, gcd(ni, nj) = 1. Then for all
a1, . . . , ar ∈ Z, the system of congruences

x ≡ a1 mod n1

x ≡ a2 mod n2

...

x ≡ ar mod nr

has a solution in Z. Moreover, if x, y are solutions to the system, then x ≡ y mod N , where N = n1 ·n2 · · ·nr.

2. State the Division Algorithm for Gaussian integers.

Solution. Let u, v be Gaussian integers, then there exist Gaussian integers q, r with r = 0, or N(r) < N(v),
such that u = vq + r.

3. State Gauss’s Lemma related to quadratic reciprocity.

Solution. Let p be an odd prime and a ∈ Z not divisible by p. Consider the list of positive integers
L := {a, 2a, 3a, . . . , p−1

2 · a}. For each 1 ≤ k ≤ p−1
2 , take nk in the open interval (−p

2 ,
p
2 ) such that

nk ≡ ka mod p. If v is the number of negative nk, then (ap ) = (−1)v.

4. State the Quadratic reciprocity Theorem.

Solution. For odd primes p ̸= q, (pq ) = (−1)
p−1
2 · q−1

2 ( qp ).

If p is an odd prime, then ( 2p ) =

{
1, if p ≡ 1, 7 mod 8

−1 if p ≡ 3, 5 mod 8
.

5. Define what it means to be a primitive root of one mod p, for p an odd prime.

Solution. Given integers a, n with GCD(a, n) = 1, the order of a mod n is the least positive integer r such
that ar ≡ 1 mod n. The integer a is a primitive root of 1 mod p if its order mod p is p− 1.
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Calculations (10 points each)

1. Solve the following system of congruences: 3x ≡ 4 (mod 5), x ≡ 2 (mod 8), 2x ≡ 7 (mod 11).

Solution. Removing the coefficients of x in the given system of congruences, we must solve: x ≡ 3 mod 5,
x ≡ 2 mod 8, x ≡ 9 mod 11. Next we take N = 5 ·8 ·11 = 440, N1 = 440

3 = 88, N2 = 440
8 = 55, N3 = 440

11 = 40.

88 ≡ 3 mod 5, and c1 ≡ 2 mod 5 is the inverse of 3 mod 5.

55 ≡ 7 mod 8 and c2 ≡ 7 mod 8 is the inverse of 7 mod 8.

40 ≡ 7 mod 11 and c3 ≡ 8 mod 11 is the inverse of 7 mod 11.

Then x = 3 · 88 · 2 + 2 · 55 · 7 + 9 · 40 · 8 = 4178 ≡ 218 mod 440.

2. Find the primitive roots of 1 mod 19.

Solution. When writing this problem, I did not realize that on a calculator, many of the numbers required
calculations get converted to exponential notation, which makes them difficult to calculate mod 19. There-
fore, any effort at all on this problem will yield full value. The answer to this problem is 3, 15, 2, 10, 14, 13,
as these are the numbers whose order mod 19 is 18.

We did not prove this, but if a is a primitive root of one mod p, then so is ar, for any r relatively prime to
p − 1, and this accounts for all such primitive roots. Thus, in the present case, it is easily seen that 3 is a
primitive root mod 19, therefore, 3, 35, 37, 311, 313, 317 are the primitive roots of 1 mod 19, which, mod 19,
are the numbers above.

3. Determine whether or not the polynomial f(x) = 3x2 + 4x− 10 has a root modulo 137.

Solution. We first look at the discriminant of f(x), i.e., 42−4 ·3 ·(−10) = 136. To determine if 136 is a square
mod 137, we calculate: ( 136137 ) = ( 2

137 )(
2

137 )(
2

137 )(
17
137 ) = 1 ·1 ·1 ·( 17

137 ). And: ( 17
137 ) = (−1)8·68( 13717 ) = ( 1

17 ) = 1.
Thus, 136 is a square mod 137. Moreover, since GCD (2 · 3, 137) = 1, 2 has an inverse mod 137. Thus, we
can use the quadratic formula mod 137 to see that f(x) has a root mod 137.

4. Use Gauss’s lemma to calculate ( 1213 ). Verify your answer using various properties of the Legendre symbol.

Solution. For Gauss’s lemma, we take 13−1
2 = 6, so we consider the set {1 · 12, 2 · 12, 3 · 12, 4 · 12, 5 · 12, 6 · 12}

= {12, 24, 36, 48, 60, 72}. We reduce these mod 13, and write them so that their residue classes mod 13 are
contained in the interval (-6.5, 6.5). This gives {−1,−2,−3,−4,−5,−6}. There are 6 negative values in this
last set, so by Gauss’s lemma, ( 1213 ) = (−1)6 = 1.

On the other hand: ( 1213 ) = ( 4
13 )(

3
13 ) = 1(̇− 1)1·6( 133 ) = ( 13 ) = 1.

5. Apply the division algorithm in the Gaussian integers for u = 2 + 3i and v = 7 + 6i, dividing v by u.

Solution. We start by calculating v
u as a complex number. 7+6i

2+3i =
32
13 − 9

13 i. Since [ 3213 ] = 2 and [− 9
13 ] = −1,

we take q = 2− i. Then 7 + 6i = (2 + 3i)(2− i) + 2i. Note N(2i) = 4 < N(2− i) = 5.

6. Factor 2 + 6i as a unit times a product of Gaussian primes.
2



Solution. We have

2 + 6i = 2(1 + 3i)

= (1− i)(1 + i)(1 + 3i)

= (1− i)(1 + i){(1 + i) + 2i}
= (1− i)(1 + i){(1 + i) + (1 + i)(1 + i)}
= (1− i)(1 + i){(1 + i)(2 + i)}
= (1− i)(1 + i)2(2 + i)

Note that 1− i, 1 + i, 2 + i are Gaussian primes since their norms are prime integers.

Proof problem. State and prove Euler’s Quadratic Residue Theorem. (25 points)

Solution. Euler’s QRT states that if p is an odd prime and GCD(a, p) = 1, then a is a quadratic residue mod

p if and only if a
p−1
2 ≡ 1 mod p. For a proof, note that if a is a quadratic residue mod p, say a ≡ b2 mod p,

then a
p−1
2 ≡ (b2)

p−1
2 ≡ bp−1 ≡ 1 mod p, by the first Fermat’s theorem.

Now suppose a
p−1
2 ≡ 1 mod p. Take 1 < b ≤ p − 1 a primitive root of 1, so that p − 1 is the order of b

mod p. We saw in class that b2, b4, . . . , bp−1 are the quadratic residues mod p. Suppose a is not a quadratic

residue mod p. Then a ≡ b2k+1 mod p, for some k. Thus, a
p−1
2 ≡ b

p−1
2 ·2k+1 ≡ b(p−1)kb

p−1
2 ≡ b

p−1
2 mod p,

thus b
p−1
2 ≡ 1 mod p, contradicting the primitive root property of b.

Alternately: Since b is a primitive root of 1 mod p, a ≡ br mod p, for some r. We want r to be even. We

have 1 ≡ a
p−1
2 ≡ b

r(p−1)
2 , so p− 1 divides r(p−1)

2 , since p− 1 is the order of b mod p. Thus (p− 1)d = r(p−1)
2 ,

for some d, which gives r = 2d, and even number, as required.
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